- 15. Answers may vary. Sample: The student may have used the Quadratic Formula incorrectly when finding the complex roots of the polynomial. If $\sqrt{3}$ is a root, then $-\sqrt{3}$ must be a root also, which would give the fifth-degree polynomial more than 5 solutions.
- 17. The error is that the equation $2x^2 10 = 0$ can be written as $2(x^2 5) = 0$, which has the irrational roots $-\sqrt{5}$ and $\sqrt{5}$.
- **20.** Possible rational roots: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{3}{1}, \pm \frac{4}{1}, \pm \frac{6}{1}, \pm \frac{12}{1}$
- 21. Possible rational roots: $\pm \frac{1}{1}, \pm \frac{3}{1}, \pm \frac{5}{1}, \pm \frac{9}{1}, \pm \frac{15}{1}, \pm \frac{45}{1}, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{9}{2}, \pm \frac{15}{2}, \pm \frac{45}{2}$
- 22. Possible rational roots: ± 1 , ± 2 , ± 4 , ± 8 , ± 16 , $\pm \frac{1}{2}$, $\pm \frac{1}{4}$
- 23. Possible rational roots: $\pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{1}{4}, \pm \frac{3}{4}, \pm \frac{1}{8}, \pm \frac{3}{8}$
- 25. 4, -2 + 3i, -2 3i
- 26. $-9, \sqrt{7}, -\sqrt{7}$
- 27. $6i, -6i, \sqrt{2}, -\sqrt{2}$
- 30. $P(x) = x^2 2x + 37$
- 31. $P(x) = x^4 6x^3 + 79x^2 486x 162$
- **35.** 9 consoles
- **36.** B, E
- **37.** A